25. Visualizing Subcelllular Enrichment of Glycogen in Live Cancer Cells by Stimulated Raman Scattering. D. Lee, J. Du, R. Yu, Y. Su, J. Heath, and L. Wei*, Accepted, Analytical Chemistry, (2020) 

24. Raman-guided Subcellular Pharmaco-Metabolomics for Metastatic Melanoma Cells. J. Du, Y. Su, C. Qian, D. Yuan, K. Miao, D. Lee, A. Ng, R. Wijker, A. Ribas, R. Levine, J. Heath*, and L. Wei*, Accepted, Nature Communications, (2020) 






23. Live-Cell Imaging and Quantification of PolyQ Aggregates by Stimulated Raman Scattering of Selective Deuterium Labeling. K. Miao and L. Wei*, ACS Cent. Sci, 4, 478, (2020).

22. Stimulated Raman excited fluorescence spectroscopy and imaging. H. Xiong, L. Shi, L. Wei, Y. Shen, R. Long, Z. Zhao and W. Min, Nat. Photonics, 13, 412 (2019).

21. Volumetric Chemical Imaging by Clearing-Enhanced Stimulated Raman Scattering Microscopy. M. Wei, L. Shi, Y. Shen, Z. Zhao, A. Guzman, L. J. Kaufman, L. Wei* and Wei Min*, Proc. Natl. Acad. Sci. USA, 116, 6608, (2019). *Co-corresponding.

Prior to Caltech:

20. Electronic Resonant Stimulated Raman Scattering Micro-Spectroscopy. L. Shi, H. Xiong, Y. Shen, R. Long, L. Wei and W. Min. J. Phys. Chem. B, DOI: 10.1021/acs.jpcb.8b07037, (2018).

19. Electronic pre-resonance stimulated Raman scattering microscopyL. Wei and W. Min, J. Phys. Chem. Lett. 9, 4294 (2018). Cover

18. Operando, three dimensional, and simultaneous visualization of ion depletion and lithium growth by stimulated Raman scattering microscopy. Q. Cheng†, L. Wei†, Z. Liu, N. Ni, Z. Sang, B. Zhu, W. Xu, L.-Q.Chen, W. Min and Y. Yang, Nat. Commun., 9, 2942 (2018). †Equal contribution. 

17. Supermultiplexed optical imaging and barcoding with engineered polyynesF. Hu, C. Zeng, R. Long, Y. Miao, L. Wei, Q. Xu and W. Min, Nat. Methods, 15, 194(2018).

16. Super-multiplex vibrational imagingL. Wei, Z. Chen, L. Shi, R. Long, A. V. Anzalone, L. Zhang, F. Hu, R. Yuste, V. W. Cornish and W. Min, Nature, 544, 465 (2017).

       “A larger palette for biological imaging” featured by Nature News & Views.

       “New dyes enable super-multicolor imaging”, featured by Chem & Engn News.

       “Good vibrations for super-multiplexed imaging” featured by Nature Methods.

       “New microscopy method breaks color barrier of optical imaging” featured by Phys.org.

       “Expanding Bioimaging's Palette” featured by Optics & Photonics News.​


15. Live-cell bioorthogonal chemical imaging: stimulated Raman scattering microscopy of vibrational probesL. Wei, F. Hu, Z. Chen, Y. Shen, L. Zhang and W. Min, Acc. Chem. Res.,49,1494 (2016).

14. Bioorthogonal chemical imaging of metabolic activities in live mammalian hippocampal tissues with stimulated Raman scattering, F. Hu, M. Lamprecht, L. Wei, B. Morrison and W. Min, Sci. Rep.,6, 39660 (2016).

13. Imaging complex protein metabolism in live organisms by stimulated Raman scattering microscopy with isotope labelingL. Wei, Y. Shen, F. Xu, F. Hu, J. K. Harrington, K. L. Targoff and W. Min. ACS Chem. Bio.10, 901 (2015). Cover

12. Vibrational imaging of glucose uptake activity in live cells and tissues by stimulated Raman scattering, F. Hu, Z. Chen, L. Zhang, Y. Shen, L. Wei and W. Min. Angew. Chem. Int. Ed. 54, 9821 (2015).

11. Live-cell imaging of alkyne-tagged small biomolecules by stimulated Raman ScatteringL. Wei, F. Hu, Y. Shen, Z. Chen, Y. Yu, C. -C. Lin, M. C. Wang and W. Min. Nat. Methods, 11, 410 (2014).

10. Multicolor live-cell chemical imaging by isotopically edited alkyne vibrational palette, Z. Chen, D. Paley, L. Wei, A. Weisman, R. Friesner, C. Nuckolls and W. Min. J. Am. Chem. Soc. 136, 8027 (2014).

9. Live-cell quantitative imaging of proteome degradation by stimulated Raman scattering, Y. Shen, F Xu, L. Wei, F. Hu and W. Min, Angew. Chem. Int. Ed. 53, 5596 (2014).

8. Vibrational imaging of choline metabolites in live cells by stimulated Raman scattering coupled with isotope-based metabolic labeling, F. Hu, L. Wei, C. Zheng, Y. Shen and W. Min, Analyst, 139, 2312 (2014). Cover.

7. Vibrational imaging of newly synthesized proteins in live cells by stimulated Raman scattering microscopy, L. Wei, Y. Yu, Y. Shen, M. Wang and W. Min, Proc. Natl. Acad. Sci. USA,110, 11226 (2013).

6. Frustrated FRET for high-contrast high-resolution two-photon imaging, F. Xu, L. Wei, Z. Chen and W. Min. Opt. Express, 12, 14097 (2013).

5. What can stimulated emission do for bio-imaging? L. Wei and W. Min. Ann. N. Y. Acad. Sci., 1293,1 (2013).

4. Pump-probe optical microscopy for imaging non-fluorescent chromophoresL. Wei and W. Min. Anal. Bioanal. Chem. 403, 2197 (2012).

3. Mapping protein-specific micro-environments in live cells by fluorescence lifetime imaging of a hybrid genetic-chemical molecular rotor tag, E. Gatzogiannis, Z. Chen, L. Wei, R. Wombacher, Y. -T. Kao, G. Yefremov, V. C. Cornish and W. Min. Chem. Commun. 48, 8694 (2012).

2. Extending the fundamental imaging-depth limit of multi-photon microscopy by imaging with photo-activatable fluorophores, Z. Chen†, L. Wei†, X. Zhu† and W. Min. Opt. Express 20, 18525 (2012).  †Equal contribution

1. Stimulated emission reduced fluorescence microscopy: a concept for extending the fundamental depth limit of two-photon fluorescence imagingL. Wei, Z. Chen and W. Min. Biomed. Opt. Express 3, 1465 (2012).

Wei Lab, Noyes Laboratory of Chemical Physics, California Institute of Technology, 1200 E California Blvd, Pasadena, CA, 91125